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Abstract - This work was concerned with the application of the Tailor McLaurin’s series in the determination of the buckling coefficients of thin 
rectangular SCCC plates loaded biaxially. The study was limited to thin rectangular isotropic plates, having aspect ratios between 1 and 2. The particular 
equation for the determination of the critical buckling load for the SCCC plate, was obtained by substituting the particular shape function (obtained via 
the Tailor-McLaurin’s series) into the governing equation for the buckling of biaxially loaded plates. The result was obtained as the force in the x-direction 
in terms of that in the y-direction using a relationship constant-k which varied from 0.1 to 1. The numerical values of the aspect ratios and k, were 
substituted into the critical buckling load equation, to obtain the critical buckling load coefficients for each aspect ratio and k-value. The results showed 
that as the aspect ratios increased from 1 to 2 and as the k-values increased from 0.1 to 1, the buckling coefficients reduced respectively. Given that no 
results were found in the literature to compare with those of the present study, It was hence concluded that the results of this work are original. 
 

Index Terms: Biaxial stresses, Buckling Coefficients, Thin Plate, In-plane forces, Tailor-Mclaurin’s Series, Boundary conditions, aspect ratio. 

——————————      —————————— 
 

1. INTRODUCTION: 

hin plates are initially flat structural 
members bounded by two parallel planes, 
called faces. The distance between the plane 
faces is called the thickness (h) of the plate. 

Usually, the plate thickness is small compared with 
other characteristic dimensions of the faces (length, 
width, diameter, etc. 

 
Geometrically, plates are bounded either by 
straight or curved lines. Ventsel and Krauthammar 
[1], classified plates as thick (with    𝑎

ℎ
≤ 10.), thin 

(with 8 ≤ 𝑎
ℎ
≤ 100.) and Membranes (with   𝑎

ℎ
≥ 80). 

According to Szilard [2], thin plates can further be 
subdivided into two, namely: Stiff Plates (thin 
plates with flexural rigidity, which carries loads 

two dimensionally, mostly by internal bending and 
torsional moments and by transverse shear and 

having  ℎ
𝑎

= 1
50
− 1

10
  and Flexible plates (plates 

whose ratio of deflection to thickness, is beyond 
0.3, and their lateral deflections, are accompanied 
by a stretching of the middle surface). The 
importance of this structural component and its 
wide application in different fields of Engineering 
such as, Civil, Mechanical, Structural, Aeronautic 
and Marine Engineering, has provoked many 
researches in the area of plate analysis. Plates 
support either lateral or in-plane loads. They 
support lateral loads by bending and in-plane 
loads by buckling. Buckling is a phenomenon 
where by a material under the action of 
compressive loads, passes from the state of stable 
equilibrium to a state of unstable equilibrium. The 
value of the compressive load at which this 
material passes from the stable to the unstable 
equilibrium, is called the critical load. This critical 
load, is the 

load that should not be reached in design. Hence, 
the determination of this load is very essential in 

engineering practice. This is to ensure designs 
which are within their safe limits. Several works 
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have been done on the buckling of plates by other 
researchers.  Wang and Long [3], used the finite 
element methods, to investigate the effect of hole 
shape, hole size and hole position on the elastic 
buckling of square perforated plates. Yang et.al [4], 
developed an analytical method to investigate the 
nonlinear buckling and expansion behaviors of 
local delamination near the surface of functionally 
graded laminated piezoelectric composite shells 
subjected to the thermal, electrical and mechanical 
loads, where the mid-plane nonlinear geometrical 
relation of delamination is considered. 
Ibearugbulem et.al [5], investigated the  
comprehensive buckling analysis of axially 
compressed rectangular flat thin plate with simply 
supported edges using a theoretical formulation 
based on the Taylor-McLaurin’s series (truncated 
at the fifth term) on the Ritz method. Ibearugbulem 
et.al [6], investigated the use of Taylor-McLaurin 
series in the inelastic buckling analysis of a thin, 
flat, rectangular, isotropic plate bounded by four 
clamped edges, subjected to uniform uniaxial in-
plane compression. They obtained the inelastic 
buckling behavior of the plate by adopting the 
deformation plasticity theory using Stowell’s 
approach.  Viswanathana et al. [7], used the 
quantic spline approximation technique to carry 

out the buckling of rectangular plates of variable 
thickness resting on an elastic foundation and 
subjected to an in-plane loads at two opposite 
edges. A polynomial shape function derived by 
Ibearugbulem [8], was used by Ibearugbulem et al 
[10] in the Ritz method to carry out the buckling 
analysis of plates with boundary conditions such 
as the SSSS, CCCC, CSSS, CCSS, CSCS, and the 
CCCS.  From the foregoing, it is seen that works 
have not been done on the biaxial buckling of thin 
rectangular plates. Hence, this work aims at 
providing solutions for the biaxial buckling of thin 
rectangular isotropic SCCC plates, using a 
polynomial shape function given by Ibearugbulem 
[8], which is based on the tailor McLaurin’s series. 
2. EQUATION FOR THE 
DETERMINATION OF THE BUCKLING 
COEFFICIENTS OF THE PLATE. 
Consider a thin rectangular plate bounded by x = 
0,  x = a, y = 0 and y = b, as shown in Figure 1. The 
plate is subjected to an in-plane compressive force 
Nx (acting on the normal to the edge x = 0 and x = 
a) and Ny (acting on the normal to the edge , y = 0 
and  y= b). Let the equation describing the buckling 
of the plates as stated in Onwuka et al [9] be 
Equation 1.

−𝑁𝑥 �
𝜕2𝑤
𝜕𝑥2�

− 𝑁𝑦 �
𝜕2𝑤
𝜕𝑦2�

= 𝐷 �
𝜕4𝑤
𝜕𝑥4

+ 2
𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+
𝜕4𝑤
𝜕𝑦4 �

                                                           (1)   

Where “w” is the deflection of the plate and D is the plate’s flexural rigidity.
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Upon the application of these compressive loads on the plates, it tends to deform from its initial state. Let the 

deflection of the plate due to the in-plane loads be “w”. Hence, multiplying Equation 1 by the plate’s deflection 

(w), yields the work equation of the plate as Equation 2. 

−𝑁𝑥 �
𝜕2𝑤
𝜕𝑥2

�𝑤 − 𝑁𝑦 �
𝜕2𝑤
𝜕𝑦2

�𝑤 = 𝐷 �
𝜕2𝑤
𝜕𝑥4

.𝑤 + 2𝑤.
𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+
𝜕4𝑤
𝜕𝑦4

.𝑤�                                           (2) 

Let the deflection (w) of the plate, be as defined in Equation 3. 

𝑤 = 𝐴𝐻                                                                                                                                                                               (3) 

Where “A” is the amplitude of deflection of the plate and H, the plate’s particular shape function, given by 

Ibearugbulem [8] as Equation (3a) 

𝐻 = (𝑎0 + 𝑎1𝑅 + 𝑎2𝑅2 + 𝑎3𝑅3 + 𝑎4𝑅4)(𝑏0 + 𝑏1𝑄 + 𝑏2𝑄2 + 𝑏3𝑄3 + 𝑏4𝑄4)                                                 (3𝑎)   

Equation (3a), can be further broken down to its x and y- components -𝑤𝑥 𝑎𝑛𝑑 𝑤𝑦 as Equations (3b) and (3c) 

respectively. 

𝑤𝑥 = (𝑎0 + 𝑎1𝑅 + 𝑎2𝑅2 + 𝑎3𝑅3 + 𝑎4𝑅4)                                                                                                                (3𝑏) 

𝑤𝑦 = (𝑏0 + 𝑏1𝑄 + 𝑏2𝑄2 + 𝑏3𝑄3 + 𝑏4𝑄4)                                                                                                                (3𝑐)      

If we integrate Equation 2 indefinitely along the axes (x and y) of the plate, we will have the total work 

equation as Equation 4.  

−𝑁𝑥��
𝜕2𝑤
𝜕𝑥2�

.𝑤𝜕𝑥𝜕𝑦 − 𝑁𝑦��
𝜕2𝑤
𝜕𝑦2�

.𝑤𝜕𝑥𝜕𝑦  

= 𝐷��
𝜕4𝑤
𝜕𝑥4

.𝑤 + 2𝑤
𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+
𝜕4𝑤
𝜕𝑦4

.𝑤�𝜕𝑥𝜕𝑦                                                                   (4)  

If R and Q are non-dimensional parameters of the plate on the x and y axes, respectively defined by Equation 

(5), and ∝ (the aspect ratio) defined by Equation (6), 

𝑅 =
𝑥
𝑎

 𝑎𝑛𝑑 𝑄 =
𝑦
𝑏

                                                                                                                                                             (5) 

∝ =
𝑏
𝑎

                                                                                                                                                                                   (6) 

Where “a” and “b” are the plate dimensions in the primary and secondary axes respectively, 

Then substituting Equations (3), (5) and (6) into Equation (4), yields Equation (7) 

 

  −
𝑁𝑥
𝑎2
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�
2
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𝑎2 ∝2��
𝜕𝐻
𝜕𝑄

�
2

𝜕𝑅𝜕𝑄

=
𝐷
𝑎4
���

𝜕4𝐻
𝜕𝑅4�

𝐻 +
2𝐻
∝2 �

𝜕4𝐻
𝜕𝑅2𝜕𝑄2� +

𝐻
∝4 �

𝜕4𝐻
𝜕𝑄4�� 𝜕𝑅𝜕𝑄                         (7) 

 If we let Ny and Nx to be related by Equation (8), 

𝑁𝑦 = 𝐾𝑁𝑥                                                                                                                                                                             (8)  
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Then substituting Equation (8) into Equation (7), and multiplying the outcome by the square of the primary 

dimension of the plate (𝑎2), will yield Equation (9) hence; 

−
𝑁𝑥
𝑎2
��

𝜕𝐻
𝜕𝑅

�
2

𝜕𝑅𝜕𝑄 −
𝐾𝑁𝑥
𝑎2 ∝2��

𝜕𝐻
𝜕𝑄

�
2

𝜕𝑅𝜕𝑄   

=
𝐷
𝑎4
���

𝜕4𝐻
𝜕𝑅4�

𝐻 +
2𝐻
∝2 �

𝜕4𝐻
𝜕𝑅2𝜕𝑄2� +

𝐻
∝4 �

𝜕4𝐻
𝑑𝑄4�� 𝜕𝑅𝜕𝑄                                                     (9) 

Making the in-plane load (Nx) on the x-axis of the plate the subject of Equation (9), yields Equation (10), which 

is the general equation of buckling of a biaxially compressed thin rectangular isotropic plates. 

𝑵𝒙 = −
𝑫
𝒂𝟐� ∬ ��𝝏

𝟒𝑯
𝝏𝑹𝟒�𝑯 + 𝟐𝑯

∝𝟐 �
𝝏𝟒𝑯

𝝏𝑹𝟐𝝏𝑸𝟐� + 𝑯
∝𝟒 �

𝝏𝟒𝑯
𝝏𝑸𝟒�� 𝝏𝑹𝝏𝑸

∬��𝝏𝑯𝝏𝑹�
𝟐

+ 𝑲
∝𝟐 �

𝝏𝑯
𝝏𝑸�

𝟐
� 𝝏𝑹𝝏𝑸

                                      (10) 

 
3. DETERMINATION OF THE SHAPE FUNCTION OF THE SCCC RECTANGULAR PLATE. 
The boundary conditions of the SCCC plates are as given below,  

At 

𝑅 = 0, 𝑤 = 𝑤′ = 0                                                                                                                                                    (11) 

𝑅 = 1, 𝑤 = 𝑤′ = 0                                                                                                                                                    (12) 

𝑄 = 0, 𝑤 = 𝑤′ = 0                                                                                                                                                    (13) 

𝑄 = 1, 𝑤 = 𝑤" = 0                                                                                                                                                    (14) 

Where w’ and w” are the first and second derivatives of the plate’s deflection equation. Given that the plate is 

treated as strands of beams in the x and y axes, let us consider the x axis. The first derivative of Equation 3b 

with respect to R, gives Equation (15). 

𝑤′ = 𝑎1 + 2𝑎2𝑅 + 3𝑎3𝑅2 + 4𝑎4𝑅3                                                                                                                               (15)                                                                                        

Substituting the boundary conditions into Equation (3b) and Equation (15) respectively, yields, Equations (16) 

and (17) at R=0 and Equations (18) and (19) at R=1.  

𝑤(0) = 0 ⟹ 𝑎0 = 0              (16)  

𝑤′(0) = 0 ⟹ 𝑎1 = 0                           (17) 

𝑤(1) = 0 ⟹ 𝑎2 + 𝑎3 + 𝑎4 = 0             (18) 

𝑤′(1) = 0 ⟹ 2𝑎2 + 3𝑎3 + 4𝑎4 = 0                                         (19)  

Solving and simplifying Equation (18) and Equation (19) simultaneously, yields Equations (20) and (21) 

𝑎3 = −2𝑎4                         (20) 

𝑎2 = 𝑎4           (21) 
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Substituting Equations (16), (17), (20), and Equations (21) into Equation (3b), yields the X component of the 

deflection equation of the SCCC plate as Equation (22), 

𝑤𝑥 = 𝑎4(𝑅2 − 2𝑅3 + 𝑅4)                                                                                                                                             (22)  

Similarly, carrying out (in the y direction) the same procedure outlined in Equations 15-21, yields the y 

component of the deflection equation as Equation (23) 

𝑊𝑦 = 𝑏4(0.5𝑄 − 1.5𝑄3 + 𝑄4)                                                                                                                                     (23) 

Substituting Equations (22) and (23) into Equation (3), gives the deflection equation of the plates as Equation 

(24) 

𝑤 = 𝑎4𝑏4(𝑅2 − 2𝑅3 + 𝑅4)(0.5𝑄 − 1.5𝑄3 + 𝑄4)                                                                                                  (24) 

Where   𝑎4𝑏4 = 𝐴                                                                                                                                                        (25)  

 and  “H”, the shape function, is given by Equation (26) 

 𝐻 = (𝑅2 − 2𝑅3 + 𝑅4)(0.5𝑄 − 1.5𝑄3 + 𝑄4)                                                                                                         (26) 

4. DETERMINATION OF THE BUCKLING COEFFICIENTS OF THE SCCC PLATES. 

Differentiating Equation (26) with respect to R and Q and taking the square the outcome, gives the shape 

function derivatives as presented in Equations (27) and (28) while multiplying the derivatives with the shape 

function (H), gives the results presented in Equations (29) to (31) hence  

�
𝜕𝐻
𝜕𝑅

�
2

= (4𝑅2 − 24𝑅3 + 52𝑅4 − 48𝑅5 + 16𝑅5)(0.25𝑄2 − 1.5𝑄4 + 𝑄5 + 2.25𝑄6 − 3𝑄7

+ 𝑄8)                                                                                                                                         (27) 

�
𝜕𝐻
𝜕𝑄
�
2

= (𝑅4 − 4𝑅5 + 6𝑅6 − 4𝑅7 + 𝑅8)  (0.25 − 4.5𝑄2 + 4𝑄3 + 20.25𝑄4 − 36𝑄5

+ 16𝑄6)                                                                                                                                   (28) 

�
𝜕4𝐻
𝜕𝑅4�

𝐻 = [24(𝑅2 − 2𝑅3 + 𝑅4)(0.25𝑄2 − 1.5𝑄4 + 𝑄5 + 2.25𝑄6 − 3𝑄7 + 𝑄8)]                               (29) 

�
𝜕4𝐻
𝜕𝑄4�𝐻 = 24(𝑅4 − 4𝑅5 + 6𝑅6 − 4𝑅7 + 𝑅8)(0.5𝑄 − 1.5𝑄3 + 𝑄4)                                                       (30) 

�
𝜕4𝐻

𝜕𝑅2𝜕𝑄2�𝐻 = (2𝑅2 − 16𝑅3 + 38𝑅4 − 36𝑅5 + 12𝑅6)  (−4.5𝑄2 + 6𝑄3 + 13.5𝑄4 − 27𝑄5

+ 12𝑄6)                                                                                                                                    (31)   

Integrating Equations (27) to (31), between 0-1, yields the results given in equations (32) - (36) 
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� � �
𝜕𝐻
𝜕𝑅

�
2

𝜕𝑅𝜕𝑄 =  1.436130004 ∗  10−4                                                                                                  (32) 
1

0

1

0
 

� � �
𝜕𝐻
𝜕𝑄

�
21

0
𝜕𝑅𝜕𝑄

1

0
=  1.360544217 ∗  10−4                                                                                                  (33) 

� � �
𝜕4𝐻
𝜕𝑅4�

1

0

1

0
𝐻𝜕𝑅𝜕𝑄 =  6.031745972 ∗ 10−3                                                                                                (34) 

� � �
𝜕4𝐻

𝜕𝑅2𝜕𝑄4�
1

0

1

0
𝐻𝜕𝑅𝜕𝑄 =  1.632653047 ∗  10−3                                                                                      (35) 

� � �
𝜕4𝐻
𝜕𝑄4�

1

0

1

0
𝐻𝜕𝑅𝜕𝑄 =  2.857142857 ∗  10−3                                                                                               (36) 

Substituting the values obtained in Equations (32) to (36) into Equation (10), yields Equation (37) 

𝑁𝑥 = −
𝐷
𝑎2 �6.03174597 ∗  10−3  + 2

∝2 (1.63265304 ∗  10−3) + 1
∝4 (2.857142857 ∗ 10−3)�

�1.436130004 ∗  10−4 + 𝑘
∝2 (1.360544217 ∗  10−4)�

                  (37) 

Equation (37), is the particular equation for the determination of the critical buckling loads of a biaxially loaded 

SCCC plate. The buckling load coefficients of the plate can be obtained from Equation (38) 

𝐹 = −
�6.03174597 ∗  10−3  + 2

∝2 (1.63265304 ∗  10−3) + 1
∝4 (2.857142857 ∗ 10−3)�

�1.436130004 ∗  10−4 + 𝑘
∝2 (1.360544217 ∗  10−4)�

                  (38) 

If we substitute the range of numerical values (1 to 2) for ∝ and (0.1 to 1) for k, into equation (38), we will have 

the results for the critical buckling load coefficients of a biaxially loaded SCCC plates as shown in Table 1 

Table 1: Critical Buckling Load coefficients for an SCCC plate loaded biaxially. 

 

Where 𝑁𝑥𝑖(𝑖 = 1,2,3 … 10), are the critical buckling load coefficients at 𝑘 = 0. 𝑖. 
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Table 1 shows that, as the aspect ratios increase 
from 1 to 2 (for all k- values), and as the k-values 
increases (for a given aspect ratio), the buckling 
coefficients reduce consistently. This is due to the 
fact that, for a given k-value, when the aspect 
ratios are increased gradually from 1 to 2, the plate 
gradually becomes a one-way plate, losing its 
square shape and taking up an oblong shape, thus 
behaving as a slender column which is weak in 
buckling. Thus the buckling load reduces. As the k-
value increases for a particular aspect ratio, the 
loads applied in the y-direction of the plate 
increases, thus, increasing the total load applied on 
the plate. In such a case, the plate’s ability to resist 
the applied loads is reduced and hence, it buckles 
faster than it should have buckled without a 
corresponding force on the y-direction. This 
accounts for the reduction in the plates buckling 
load as the k-values (forces in the y-axis of the 
plate) are increased.  

Literature was consulted in order to match the 
results of this research with existing results, but no 
existing result was found on this plate boundary 
condition.  

5. CONCLUSION: 

From this work, the following conclusions have 
been arrived at; 

i. The equation for the determination of the 
biaxial critical buckling load for an SCCC 
plate has been derived. 

ii. The critical buckling load coefficients for a 
biaxially loaded SCCC plate (for different 
aspect ratios and k-values), have been 
determined. 

iii. This work is original, as there are no 
works in the literature to compare its 
results with. 
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